Math, asked by aiymankkkhhan, 1 month ago

If 4 tanB=3 then 4sinB-3cosB/4sinB+3cosB

Answers

Answered by NITESH761
5

Answer:

0

Step-by-step explanation:

\tt 4tan(B)=3

\tt tan(B)=\dfrac{3}{4}

\tt tan(B)=\dfrac{opposite\:side}{adjecent\:side}

\sf opposite\:side=3

\sf adjecent\:side=4

By using Pythagoras theorem,

\tt (a)^2+(b)^2=(c)^2

\tt (3)^2+(4)^2=(c)^2

\tt c=\sqrt{9+16}

\tt c=\sqrt{25}

\tt c=5

\sf sin(B)=\dfrac{opposite\:side}{hypotenuse}

\sf sin(B)=\dfrac{3}{5}

\sf cos(B)=\dfrac{adjecent\:side}{hypotenuse}

\sf cos(B)=\dfrac{4}{5}

\tt \dfrac{4sin(B)-3cos(B)}{4sin(B)+3cos(B)}

\tt =\dfrac{4\bigg(\dfrac{3}{5}\bigg)-3\bigg(\dfrac{4}{5}\bigg)}{4\bigg(\dfrac{3}{5}\bigg)+3\bigg(\dfrac{4}{5}\bigg)}

\tt =\dfrac{\dfrac{12}{5}-\dfrac{12}{5}}{\dfrac{12}{5}+\dfrac{12}{5}}

\tt= \dfrac{\dfrac{(60-60)}{5}}{\dfrac{(60+60)}{5}}

\tt= \dfrac{5(0)}{5(120)}

\tt= \dfrac{0}{600}

\tt= 0

Similar questions