Math, asked by vernikadudeja, 10 months ago

if 4 th and 6 th terms of an AP be 15 and 23 respectively then 83 is which term​

Answers

Answered by littleknowledgE
12

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\underline{\blacksquare\:\:\:\footnotesize{\red{\text{SOLUTION:-}}}}

\footnotesize{a_4=a_1+(4-1)d}

\footnotesize{15=a_1+3d}

\footnotesize{a_1+3d=15}

\footnotesize{a_1=15-3d\:\:------------(1)}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{1mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\footnotesize{a_6=a_1+(6-1)d}

\footnotesize{23=a_1+5d}

\footnotesize{a_1+5d=23}

\footnotesize{a_1=23-5d\:\:------------(2)}

\footnotesize{\text{compairing equation (1) and (2) we get ,}}

\footnotesize{15-3d=23-5d}

\footnotesize{5d-3d=23-15}

\footnotesize{2d=8}

\footnotesize{d=\dfrac{\cancel8}{\cancel2}}

\footnotesize{\red{d=4}}

\footnotesize{\text{putting value d=4 in equation (1) , we get}}

\footnotesize{a_1=15-3(4)}

\footnotesize{a_1=15-12}

\footnotesize{\red{a_1=3}}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{1mm}\put(1,1){\line(1,0){6.8}}\end{picture}

\footnotesize{\text{let , 83 be the n'th term of the series }}

\footnotesize{a_n=a_1+(n-1)d}

\footnotesize{83=3+(n-1)4}

\footnotesize{83-3=(n-1)4}

\footnotesize{\dfrac{\cancel{80}}{\cancel4}=(n-1)}

\footnotesize{20=(n-1)}

\footnotesize{20+1=n}

\footnotesize{\red{n=21}}

\footnotesize{\therefore\:\text{83 is the 21'th term of the series }}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Similar questions