Math, asked by ajeytharun2006, 8 months ago

if 4 to the power (2x-1) - 16 to the power of (x-1) = 384 find the value of x​

Answers

Answered by BrainlyPopularman
7

GIVEN :

  \\  \implies \bf  {4}^{2x - 1}  -  {16}^{x - 1}  = 384 \\

TO FIND :

• Value of 'x' = ?

SOLUTION :

  \\  \implies \bf  {4}^{2x - 1}  -  {16}^{x - 1}  = 384 \\

• We should write this as –

  \\  \implies \bf  {4}^{2x - 1}  -  {( {4}^{2}) }^{x - 1}  = 384 \\

  \\  \implies \bf  {4}^{2x - 1}  -  {4}^{2(x - 1)}  = 384 \\

  \\  \implies \bf  {4}^{2x - 1}  -  {4}^{2x -2}  = 384 \\

• Using identity –

  \\  \implies \bf  {a}^{b +c} =  {a}^{b} . {a}^{c}  \\

  \\  \implies \bf  {4}^{2x }. {4}^{ - 1}   -  {4}^{2x}. {4}^{ - 2}= 384 \\

  \\  \implies \bf  {4}^{2x }( {4}^{ - 1}   - {4}^{ - 2})= 384 \\

  \\  \implies \bf  {4}^{2x } \left( \dfrac{1}{4}  -  \dfrac{1}{ {4}^{2} }  \right)= 384 \\

  \\  \implies \bf  {4}^{2x } \left( \dfrac{1}{4}  -  \dfrac{1}{16}  \right)= 384 \\

  \\  \implies \bf  {4}^{2x } \left( \dfrac{4 - 1}{16}  \right)= 384 \\

  \\  \implies \bf  {4}^{2x } \left( \dfrac{3}{16}  \right)= 384 \\

  \\  \implies \bf  {4}^{2x } \left( \dfrac{1}{16}  \right)= 128 \\

  \\  \implies \bf  {4}^{2x }=  {4}^{2}( 128) \\

  \\  \implies \bf  {2}^{4x}=  {2}^{4} .{2}^{7}  \\

  \\  \implies \bf  {2}^{4x}=  {2}^{4 + 7}   \\

  \\  \implies \bf  {2}^{4x}=  {2}^{11}   \\

• Now compare –

  \\  \implies \bf  4x = 11   \\

  \\  \implies \large { \boxed{\bf  x =  \dfrac{11}{4}}}\\

Similar questions