Math, asked by Amil4517, 10 months ago

if 4^x+1-4^x = 24 find the value of (2x)^x

Answers

Answered by vijayashashi1
0

Answer:

Step-by-step explanation:

Answered by Anonymous
2

Answer:

=&gt;4^{x}-4^{x-1}=24 \\ =&gt;4^x-4^{x}×4^{-1}=24 \\=&gt; 4^{x}-4^{x}/4=24 \\=&gt; 4^{x}(1-1/4)=24 \\ =&gt;4^{x}(4-1/4)=24 \\=&gt; 4^{x}=24×3/4 \\ =&gt;4^{x}=32 \\ =&gt;4^{x}=32 \\ =</p><p>2^{2x}=2^{5}       (base\:are\:equal)\\  compare\:the\:exponent \\ 2x=5 \\ x=5/2 \\ putting\:the \:value\:of\:X \\ (2x)^{x}=(2×5/2)^{5/2} \\ =&gt;5^{5/2} \\ =&gt;5^(5×1/2) \\ =&gt;\sqrt5^{5} \\ =&gt;\sqrt5×5×5×5×5 \\=&gt; 5×5\sqrt5 \\ =&gt;25\sqrt5

Similar questions