Math, asked by Mamonipriyankamamoni, 1 year ago

if 4^x=4^x-1=24then find the value of (2x)^2x​

Answers

Answered by sivaprasath
13

Answer:

 x= \frac{5}{2},

So,

(2x)^{2x} = 3125

Step-by-step explanation:

Given :

To find the value of :

(2x)^{2x} if,

4^x-4^{x-1}=24

Solution :

4^x-4^{x-1}=24

4^{x-1}(4 -1)=24

4^{x-1}(3)=24

4^{x-1}=\frac{24}{3}

4^{x-1}=8

4^{x-1}=2^3

4^{x-1}=[4^{\frac{1}{2}}]^3

4^{x-1}=4^{\frac{3}{2}}

Since,

Bases are equal, powers must be equal,

 x - 1 = \frac{3}{2}

 x = \frac{3}{2}+1 = \frac{3+2}{2}

 x= \frac{5}{2}

So,

(2x)^{2x} = (\frac{5}{2}\times2)^{\frac{5}{2}\times 2} = 5^5=3125


Mamonipriyankamamoni: thanks
sivaprasath: No Problem
Answered by Shubhendu8898
7

Answer: 3125

Step-by-step explanation:

Given,

4^x-4^{x-1}=24\\\;\\4^x-4^x.4^{-1}=24\\\;\\\text{Taking}\;\;4^x\;\;\text{Common;}\\\;\\4^x(1-4^{-1})=24\\\;\\4^x(1-\frac{1}{4})=24\\\;\\4^x(\frac{4-1}{4})=24\\\;\\4^x\times\frac{3}{4}=24\\\;\\4^x=\frac{24\times4}{3}\\\;\\4^x=8\times4\\\;\\4^x=32\\\;\\4^x=2^5\\\;\\(2^2)^x=2^5\\\;\\2^{2x}=2^5\\\;\\\text{On comparing base;}\\\;\\2x=5

Now,

(2x)^{2x}=5^5\\\;\\(2x)^{2x}=5\times5\times5\times5\times5\\\;\\(2x)^{2x}=3125

Note:-

1.)\;\;a^{-1}=\frac{1}{a}\\\;\\2.)\;\;(a^m)^n=a^{mn}


sivaprasath: I request you to put 2x in braces (2x)^{2x} not 2x^2x , both are not equal,.
Similar questions