if 4^x+5=256^2x-3, then x=?
Answers
Answered by
1
Answer:
The value of x is 17/7
Step-by-step explanation:
4^(x+5) = 2^[2^(x+5)] (∵ 4 = 2²)
4^(x+5) = 2^[2(x+5)] {Using indices (a^[m^n]) = a^(mn)}
1. ∴ 4^(x+5) = 2^(2x+10)
256^(2x-3) = 2^[8^(2x-3)] (∵256 = 2^8)
256^(2x-3) = 2^[8(2x-3)] {Using indices (a^[m^n]) = a^(mn)}
2. ∴ 256^(2x-3) = 2^(16x-24)
4^x+5 = 256^2x-3
From (1) & (2),
2^(2x+10) = 2^(16x-24)
If bases are same, powers can be equated.
2x + 10 = 16x - 24
16x - 2x = 24 + 10
14x = 34
x = 34/14
x = 17/7
Similar questions