Math, asked by ratnakumari01091977, 8 months ago

if 450°< theta <540° and sin theta =12/13. then calculate sin theta÷2 and cos theta ÷2

answer fastly guys​

Attachments:

Answers

Answered by keerthijaya7777
0

Answer:

Valueof

2sinθcosθ

(sin

2

θ−cos

2

θ)

×

tan

2

θ

1

=

3456

595

Step-by-step explanation:

\begin{gathered}Given ,\\sin\theta = \frac{12}{13}--(1)\end{gathered}

Given,

sinθ=

13

12

−−(1)

\begin{gathered}cos^{2}\theta = 1-sin^{2}\theta \\=1-(\frac{12}{13})^{2}\\=1-\frac{144}{169}\\=\frac{169-144}{169}\\=\frac{25}{169}\end{gathered}

cos

2

θ=1−sin

2

θ

=1−(

13

12

)

2

=1−

169

144

=

169

169−144

=

169

25

\begin{gathered}cos\theta = \sqrt{\frac{25}{169}}\\=\frac{5}{13}--(2)\end{gathered}

cosθ=

169

25

=

13

5

−−(2)

\begin{gathered}tan\theta = \frac{sin\theta}{cos\theta}\\=\frac{\frac{12}{13}}{\frac{5}{13}}\\=\frac{12}{5}--(3)\end{gathered}

tanθ=

cosθ

sinθ

=

13

5

13

12

=

5

12

−−(3)

\begin{gathered}Now,Value \: of \\ \frac{(sin^{2}\theta-cos^{2}\theta)}{2sin\theta cos\theta}\times \frac{1}{tan^{2}\theta}\end{gathered}

Now,Valueof

2sinθcosθ

(sin

2

θ−cos

2

θ)

×

tan

2

θ

1

=\frac{sin^{2}\theta-(1-sin^{2}\theta)}{2sin\theta cos\theta }\times \frac{1}{tan^{2}\theta}=

2sinθcosθ

sin

2

θ−(1−sin

2

θ)

×

tan

2

θ

1

=\frac{(2sin^{2}\theta-1)}{2sin\theta cos\theta}\times \frac{1}{tan^{2}\theta}=

2sinθcosθ

(2sin

2

θ−1)

×

tan

2

θ

1

=\frac{[2\big(\frac{12}{13}\big)^{2}-1]}{2\times \frac{12}{13}}\times \frac{5}{13}\times \frac{1}{\big(\frac{12}{5}\big)^{2}}=

13

12

[2(

13

12

)

2

−1]

×

13

5

×

(

5

12

)

2

1

=\frac{2\times \frac{144}{169}-1}{2\times \frac{12}{13}\times \frac{5}{13}}\times \frac{25}{144}=

13

12

×

13

5

169

144

−1

×

144

25

=\frac{\frac{(288-169)}{169}}{\frac{120}{169}}\times \frac{25}{144}=

169

120

169

(288−169)

×

144

25

=\frac{119\times 5}{24 \times 144}=\frac{ 595}{3456}=

24×144

119×5

=

3456

595

Similar questions