If 4a^2+3b^2/4a^2-3b^2 = 7/2 find 2a^4-11b^4/2a^4+11b^4
Answers
Answered by
3
Given: 4a^2+3b^2 / 4a^2-3b^2 = 7/2
To find: The value of 2a^4-11b^4 / 2a^4+11b^4
Solution:
- Now we have given 4a^2+3b^2 / 4a^2-3b^2 = 7/2
- Using componendo and dividendo, we get:
4a^2+3b^2+4a^2−3b^2 / 4a^2+3b^2-4a^2+3b^2 = 7+4 / 7-4
8a^2 / 6b^2 = 11/3
4a^2/b^2 = 11
a = ±√11 b / 2
- Now consider +√11 b/2, we get:
2(√11 b/2)^4-11b^4 / 2(√11 b/2)^4+11b^4
121b^4 - 88b^4 / 121b^4 + 88b^4
33b^4 / 209b^4
33/209
3/19
- Now consider -√11 b/2, we get:
2(-√11 b/2)^4-11b^4 / 2(-√11 b/2)^4+11b^4
121b^4 - 88b^4 / 121b^4 + 88b^4
33b^4 / 209b^4
33/209
3/19
Answer:
So the value of 2a^4-11b^4/2a^4+11b^4 is 3/19.
Similar questions