Math, asked by ayushmanspanda14, 8 months ago

if (4a + 3b) = 10 and ab = 2 , find the value of (64 a³ + 27 b³)​

Answers

Answered by Bidikha
5

Given -

(4a + 3b) = 10 \: and \: ab = 2

To find -

 {64a}^{3}  +  {27b}^{3}

Solution -

(4a + 3b) = 10

Cubing  \: \: both \: \:  sides

 {(4a + 3b)}^{3}  =  {10}^{3}

By \: applying \: the \: formula \:  {(a + b)}^{3}  =  {a}^{3}  +  {b}^{3}  + 3ab(a + b) \: we \: will \: get

 {(4a)}^{3}  +  {(3b)}^{3}  + 3 \times 4a \times 3b(4a + 3b) = 1000

 {64a}^{3}  +  {27b}^{3}  + 36ab(4a + 3b) = 1000

 {64a}^{3}  +  {27b}^{3}  + 36 \times 2 \times 10 = 1000

 {64a}^{3}  +  {27b}^{3}  + 720 = 1000

 {64a}^{3}  +  {27b}^{3}  = 1000 - 720

 {64a}^{3}  +  {27b}^{3 }  =280

Therefore \: the \: value \: of \:  {64a}^{3}  +  {27b}^{3}  \: is \: 280

Similar questions