if 4a+3b =10 and ab=2 ,find the value of 64a^3+27b^3
Answers
Answered by
187
hey friend ,
here we have to find the value of 64a^3 +27b^3 so we can see that 64 is the cube of 4 and 27 is cube of 3.
Given :-
=) (4a + 3b) =10 --------(1)
cubing both sides.
=) (4a+3b)^3 = (10)^3
=)64a^3 +27b^3 + 3×4a×3b(4a+3b) =1000
=)64a^3 +27b^3 +36ab(4a+3b) =1000---(2)
so also given that :---
=) ab = 2. and 4a +3b = 10
put these value in equation (2) we get.
=) 64a^3 +27b^3 +36×2×10 =1000
=) 64a^3 +27b^3 + 720 =1000
=) 64a^3 + 27b^3 = 1000 - 720
=) 64a^3 +27b^3 = 280
so the required value is 280 ans.
______________________________
hope it will help u
here we have to find the value of 64a^3 +27b^3 so we can see that 64 is the cube of 4 and 27 is cube of 3.
Given :-
=) (4a + 3b) =10 --------(1)
cubing both sides.
=) (4a+3b)^3 = (10)^3
=)64a^3 +27b^3 + 3×4a×3b(4a+3b) =1000
=)64a^3 +27b^3 +36ab(4a+3b) =1000---(2)
so also given that :---
=) ab = 2. and 4a +3b = 10
put these value in equation (2) we get.
=) 64a^3 +27b^3 +36×2×10 =1000
=) 64a^3 +27b^3 + 720 =1000
=) 64a^3 + 27b^3 = 1000 - 720
=) 64a^3 +27b^3 = 280
so the required value is 280 ans.
______________________________
hope it will help u
Answered by
23
given,
4a+3b=10
squaring on both sides,
(4a+3b)²=(10)²
⇒(4a)²+(3b)²+2(4a)(3b)=100
⇒(4a)²+(3b)²=100-24ab
⇒(4a)²+(3b)²=100-24×2
⇒(4a)²+(3b)²=100-48=52 --------------- 1
64a³+27b³=(4a)³+(3b)³
[ x³+y³=(x+y)(x²+xy+y²) ]
⇒ (4a)³+(3b)³ = (4a+3b)[(4a)²+(4a×3b)+(3b)²]
= 10(52+12ab) [from 1]
= 10(52+12×2)
= 10×76
= 760
4a+3b=10
squaring on both sides,
(4a+3b)²=(10)²
⇒(4a)²+(3b)²+2(4a)(3b)=100
⇒(4a)²+(3b)²=100-24ab
⇒(4a)²+(3b)²=100-24×2
⇒(4a)²+(3b)²=100-48=52 --------------- 1
64a³+27b³=(4a)³+(3b)³
[ x³+y³=(x+y)(x²+xy+y²) ]
⇒ (4a)³+(3b)³ = (4a+3b)[(4a)²+(4a×3b)+(3b)²]
= 10(52+12ab) [from 1]
= 10(52+12×2)
= 10×76
= 760
lekhahasa:
sorry, in this method we have to put 4a-3b in place of 4a+3b
Similar questions