Math, asked by pallavisingh2011, 10 months ago

if 4a+7b/4c+7d=4a-7b/4c-7d then prove that a:b::c:d​

Answers

Answered by amitnrw
10

proved a:b::c:d if 4a+7b/4c+7d=4a-7b/4c-7d

Step-by-step explanation:

4a+7b/4c+7d=4a-7b/4c-7d

(4a+7b)(4c-7d) =(4a-7b)(4c + 7d)

16ac -28ad + 28bc -49bd = 16ac + 28ad - 28bc - 49bd

56bc = 56ad

bc = ad

c/d = a/b

a/b = c/d

QED Proved

learn more

Are 2kg : 80kg and 25g : 625g form proportion? - Brainly.in

https://brainly.in/question/7732209

If a, b, c, d are in proportion, then prove that a²+5c²/b²+5d²=a/b ...

https://brainly.in/question/4594620

Answered by CarliReifsteck
9

Hence proved

\dfrac{4a+7b}{4c+7d}=\dfrac{4a-7b}{4c-7d}\Rightarrow a:b :: c:d

Step-by-step explanation:

Given: \dfrac{4a+7b}{4c+7d}=\dfrac{4a-7b}{4c-7d}

To find: a:b::c:d

\dfrac{4a+7b}{4c+7d}=\dfrac{4a-7b}{4c-7d}

Move a and b same side/ c and d same side

\dfrac{4a+7b}{4a-7b}=\dfrac{4c+7d}{4c-7d}

Apply componendo & dividendo

\dfrac{4a+7b+4a-7b}{4a+7b-4a+7b}=\dfrac{4c+7d+4c-7d}{4c+7d-4c+7d}

Simplify

\dfrac{8a}{14b}=\dfrac{8c}{14d}

Divide both side by 8 and multiply 14

\dfrac{8a}{14b}\times \dfrac{14}{8}=\dfrac{8c}{14d}\times \dfrac{14}{8}

\dfrac{a}{b}=\dfrac{c}{d}

Therefore, a:b :: c:d

Hence proved

#Learn more:

Ratio and proportion

https://brainly.in/question/6621190

Similar questions