if 4a2+9b2+16c2+(1/9a2)+(1/16b2)+(1/25c2)=133/30 then find 1440a2b2c2
Answers
Answered by
8
Answer:
1440a²b²c² = 1
Step-by-step explanation:
4a² + 9b² + 16c² + 1/9a² + 1/16b² + 1/25c² = 133/30
=> 4a² + 1/9a² + 9b² + 1/16b² + 16c² + 1/25c² = 133/30
=> (2a)² + (1/3a)² + (3b)² + (1/4b)² + (4c)² + (1/5c)² = 133/30
=> (2a - 1/3a)² + 4/3 + (3b - 1/4b)² + 3/2 + (4c - 1/5c)² + 8/5 = 133/30
=> (2a - 1/3a)² + (3b - 1/4b)² + (4c - 1/5c)² + 133/30 = 133/30
=> (2a - 1/3a)² + (3b - 1/4b)² + (4c - 1/5c)² = 0
2a - 1/3a = 0 , 3b - 1/4b = 0 , 4c - 1/5c = 0
=> 2a = 1/3a => 6a² = 1
3b = 1/4b => 12b² = 1
4c = 1/5c => 20c² = 1
6a² * 12b² * 20c² = 1 * 1 * 1
=> 1440a²b²c² = 1
Similar questions