If 4a2 + 9b2 + 16c2 =2(3ab + 6bc + 4ca), then cosa
Answers
Answered by
1
Answer:
CosA = -11/24
Step-by-step explanation:
4a² + 9b² + 16c² =2(3ab + 6bc + 4ca)
multiply by 2 both sides
=> 2(4a² + 9b² + 16c²) = 2 * 2(3ab + 6bc + 4ca)
=> 4a² + 9b² + 16c² + 4a² + 9b² + 16c² = 2*2*3ab + 2 * 2* 6bc + 2 * 2 * 4ca
=> 4a² + 9b² - 2*2*3ab + 16c² + 4a² - 2 * 2 * 4ca + 9b² + 16c² - 2 * 2* 6bc = 0
=> (2a)² + (3b)² - 2*(2a)*(3b) + (4c)² + (2a)² - 2(4c)(2a) + (3b)² + (4c)² - 2 *(3b)(4c) = 0
=> (2a - 3b)² + (4c - 2a)² + (3b - 4c)² = 0
=> 2a = 3b , 2a = 4c & 3b = 4c
=> 2a = 3b = 4c
Let say 2a = 3b = 4c = 12k
=> a = 6k . b = 4k , c = 3k
a² = b² + c² - 2bcCosA
=> (6k)² = (4k)² + (3k)² - 2*4k*3kCosA
=> 36k² = 16k² + 9k² - 24k²CosA
=> 11k² = - 24k²CosA
=> CosA = -11/24
Similar questions
Math,
6 months ago
Chemistry,
6 months ago
English,
6 months ago
Political Science,
1 year ago
Computer Science,
1 year ago