Math, asked by anuragkumarSwag9178, 1 month ago

If 4cos thetha +3sin thetha =5 find value of tan thetha

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm :\longmapsto\:4cos\theta + sin\theta = 5

\boxed{ \bf{ \:Divide \: whole \: equation \: by \: cos\theta, \: we \: get}}

\rm :\longmapsto\:\dfrac{4cos\theta}{cos\theta}  + \dfrac{3sin\theta}{cos\theta}  = \dfrac{5}{cos\theta}

\rm :\longmapsto\:4 + 3tan\theta = 5sec\theta

On squaring both sides, we get

\rm :\longmapsto\:(4 + 3tan\theta) {}^{2}  = (5sec\theta) {}^{2}

\rm :\longmapsto\: {4}^{2} +  {(3tan\theta)}^{2} + 2 \times 4 \times 3tan\theta = 25 {sec}^{2}\theta

\rm :\longmapsto\:16 + 9 {tan}^{2}\theta + 24tan\theta = 25(1 +  {tan}^{2}\theta)

\red{\bigg \{ \because \:  {sec}^{2}x -  {tan}^{2}x = 1  \bigg \}}

\rm :\longmapsto\:16 + 9 {tan}^{2}\theta + 24tan\theta = 25 +  25{tan}^{2}\theta

\rm :\longmapsto\:16{tan}^{2}\theta  -  24tan\theta + 9 = 0

\rm :\longmapsto\:16{tan}^{2}\theta  -  12tan\theta  - 12tan\theta+ 9 = 0

\rm :\longmapsto\:4tan\theta(4tan\theta - 3) - 3(4tan\theta - 3) = 0

\rm :\longmapsto\:(4tan\theta - 3)(4tan\theta - 3) = 0

\bf\implies \:tan\theta = \dfrac{3}{4}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions