if 4cos² thita - 1 = 0 find the acute angle thita hnece find the value of 2tan thita / 2tan² thita
Answers
Answer:
thetta = 60°
2tanthetta/2tan²thetta = 2 root3/6
Step-by-step explanation:
4cos²thetta-1=0
4cos²thetta=1
cos²thetta=1/4
costhetta =1/2
therefore thetta =60°
2tanthetta/2tan²thetta
2×root3/2×(root3)²
2root3/6
Step-by-step explanation:
Given:-
4cos² thita - 1 = 0
To find:-
if 4cos² thita - 1 = 0 find the acute angle thita hence find the value of 2tan thita / 2tan² thita
Solution:-
Given equation is 4 Cos^2 θ -1 = 0
=>4 cos^2 θ = 1
=>Cos^2 θ = 1/4
=>Cos θ = √(1/4)
=>Cos θ = 1/2
- => Cos θ = Cos 60°
Therefore, θ = 60°
The value of the acute angle θ = 60°
The value of 2 tan θ/ 2 tan^2 θ
=>2 Tan 60° / 2 tan^2(60°)
=>2 (√3) /2(√3)^2
=>2√3/(2×3)
=>2√3/6
=>√3/3 (0r)
=>√3/(√3×√3)
=>1/√3
or
2 tan θ/ 2 tan^2 θ
=>2 Tanθ/2 tanθ×tanθ
=>1/tanθ
=>Cotθ
=>Cot60°
=>1/√3
Answer:-
The value of an acute angle θ = 60°
The value of 2 tan θ/ 2 tan^2 θ = √3/3 or 1/√3
Used formula:-
- Cos 60° = 1/2
- Tan 60°= √3
- Cot 60°= 1/√3
- 1/TanA = Cot A