Math, asked by tithidas0524, 3 days ago

If 4cosA-5sinA=0 then find the value of 3sinA -2cosA/5sinA+3cosA​

Answers

Answered by samikshasristi4
0

Answer:

= ?

solution:

Squaring and adding equations (1) and (2), we get

(3\cos A - 4\sin A)^2 + (4\cos A + 3\sin A)^2(3cosA−4sinA)

2

+(4cosA+3sinA)

2

= 5^25

2

+ x^{2}x

2

⇒ 25 + x^{2}x

2

= (3\cos A)^2 + (4\sin A)^2 + 2(3\cos A)(4\sin A)+ (4\cos A)^2 + (3\sin A)^2-2(3\cos A)(4\sin A)(3cosA)

+(4sinA)

2

+2(3cosA)(4sinA)+(4cosA) 2

+(3sinA)

2 −2(3cosA)(4sinA)

⇒ 25 + x^{2}x

2 = 9\cos^2 A +16\sin^2 A + 16\cos^2+ 9\sin^2 A9cos

2

A+16sin

2

A+16cos

2 +9sin 2 A ⇒ 25 + x^{2}x 2

= 9(\cos^2 A+\sin^2 A) +16(\cos^2 A+\sin^2 A)9(cos 2

A+sin

2

A)+16(cos

2

A+sin

2

A)

trigonometric identity:

\cos^2 Acos

2

A + \sin^2 Asin

2

A = 1

25 + x^{2}x

2

= 9(1) + 16(1)

⇒ 25 + x^{2}x

2 = 9 + 16

⇒ x^{2}x

2

= 25 - 25

⇒ x^{2}x

2

= 0

⇒ x = 0

∴ 4\cos AcosA + 3\sin AsinA = 0

Thus, if 3\cos AcosA - 4\sin AsinA = 5, then the value of "4\cos AcosA + 3\sin AsinA = 0".

Answered by nk21061983
2

Answer:

4cosa= 5sina

4/5= tana

√4^2+5^2= √41 =h

2/√41/35/√41= 2/35 is correct answer I hope you are like my answer,

Similar questions