Math, asked by dafloxiii764, 1 year ago

If 4sin^2a = 1 find the value of 2+3cos^2a/1-2sin^2a

Answers

Answered by Anonymous
7

Answer:

\large \bold\red{ \frac{17}{2} }

Step-by-step explanation:

Given,

  • 4 { \sin }^{2} a = 1

To find the value of,

  •  \frac{ 2 + 3 { \cos }^{2} a}{1 - 2 { \sin }^{2} a}

Further solving,

We get,

 =  >  { \sin }^{2} a =  \frac{1}{4}

Now,

We know that,

  •  { \cos }^{2}  \alpha  = 1 -  { \sin}^{2} \alpha

Therefore,

We get,

 =  >  { \cos }^{2}a =  1 -  \frac{1}{4} =  \frac{4 - 1}{4}    \\  \\  =  >   { \cos }^{2} a =  \frac{3}{4}

Therefore,

Putting the respective values,

We get,

 =  >  \frac{2 + 3 { \cos }^{2}a }{1 - 2 { \sin}^{2}a }  \\  \\  =  \frac{2 + (3 \times  \frac{3}{4} )}{1 -( 2 \times  \frac{1}{4} )}  \\  \\  =  \frac{2 +  \frac{9}{4} }{1 -  \frac{1}{2} }  \\  \\  =  \frac{ \frac{8 + 9}{4} }{ \frac{2 - 1}{2} }   \\ \\  = \frac{ \frac{17}{4} }{ \frac{1}{2} }   \\  \\  =  \large \bold{ \frac{17}{2} }

Similar questions