Math, asked by shettyshreya283gmail, 11 months ago

if 4sin A = 3, find the value of x if
√cosec^2 A – √cot^2 A÷sin^2 A-1 + 2cot A = √7/x+cosA​

Answers

Answered by GauravSaxena01
2

Solution:-

Given [ √(Cosec^2A - Cot^2 A) / Sec^2 A ] + 2 Cot A = √ 7 / x + CosA Sin A = 3 / 4

⇒ Cosec A = 4 / 3 Using identities Cos A = √ 7 / 4

⇒ Sec A = 4 / √ 7 Cot A

= √ 7 / 3 [ √[1 / (16 / 7) ] + 2√ 7 / 3

= (√ 7 / x ) + √ 7 / 4 √ 7 / 4 + 2√ 7 / 3

= √ 7 / ( x + 4 ) 11√ 7 / 12

= √ 7 / (x + 4 ) 11 / 12

= 1 / (x + 4 ) 11x + 44

= 12 x

= -32 / 11

=============

@GauravSaxena01

Answered by Anonymous
0

Answer:

Question:-

the length of a rectangle is 8m more than its breadth if its perimeter is 128m, find its length , breadth and Area

Answer:-

The length of Rectangle is 36 m

The breadth of rectangle is 28 m

The area of Given rectangle is 1008 m².

To find:-

Length and breadth of rectangle

Area of rectangle

Solution:-

Let the breadth be x

Length = 8 + x

Perimeter = 128 m

\boxed{ \large{ \mathfrak{perimeter = 2(l + b)}}}

According to question,

\large{ \tt: \implies \: \: \: \: \: 2(8 + x + x) = 128}

\begin{gathered} \large{ \tt: \implies \: \: \: \: \: 8 + 2x = \frac{128}{2} } \\ \end{gathered}:

\large{ \tt: \implies \: \: \: \: \: 8 + 2x = 64}

\large{ \tt: \implies \: \: \: \: \: 2x = 64 - 8}

\large{ \tt: \implies \: \: \: \: \: 2x = 56}

\large{ \tt: \implies \: \: \: \: \: x = 28}

The breadth of rectangle is 28 m

Length = 8 + x = 28 + 8 = 36 m

\large{ \boxed{ \mathfrak{area = l \times b}}}

\large{ \tt: \implies \: \: \: \: \: area = 28\times 36}

\large{ \tt: \implies \: \: \: \: \: area = 1008 \: {m}^{2} }

The area of Given rectangle is 1008 m².

Similar questions