Math, asked by krishgupta4802, 2 months ago

If 4sin2 theta+4cosec2 theta=17 , then the value of tan theta is -​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:4 {sin}^{2} \theta  + 4 {cosec}^{2} \theta  = 17

can be rewritten as

\rm :\longmapsto\: {sin}^{2} \theta  +  {cosec}^{2} \theta  = \dfrac{17}{4}

We know,

\boxed{ \tt{ \:  {x}^{2} +  {y}^{2} =  {(x + y)}^{2} - 2xy}}

So, using this,

\rm :\longmapsto\: {(sin\theta  + cosec\theta )}^{2}  - 2sin\theta  \: cosec\theta  = \dfrac{17}{4}

We know,

\boxed{ \sf{ \: cosec\theta  =  \frac{1}{sin\theta } }}

So, using this

\rm :\longmapsto\: {(sin\theta  + cosec\theta )}^{2}  - 2  = \dfrac{17}{4}

\rm :\longmapsto\: {(sin\theta  + cosec\theta )}^{2}  = \dfrac{17}{4}  + 2

\rm :\longmapsto\: {(sin\theta  + cosec\theta )}^{2}  = \dfrac{17 + 8}{4}

\rm :\longmapsto\: {(sin\theta  + cosec\theta )}^{2}  = \dfrac{25}{4}

\rm :\longmapsto\: {(sin\theta  + cosec\theta )}  = \dfrac{5}{2} -  -  - (1)

Again,

Given that

\rm :\longmapsto\:4 {sin}^{2} \theta  + 4 {cosec}^{2} \theta  = 17

can be rewritten as

\rm :\longmapsto\: {sin}^{2} \theta  +  {cosec}^{2} \theta  = \dfrac{17}{4}

We know,

\boxed{ \tt{ \:  {x}^{2} +  {y}^{2} =  {(x  -  y)}^{2}  +  2xy}}

So, using this we get

\rm :\longmapsto\: {(cosec\theta   -  sin\theta )}^{2}   +  2sin\theta  \: cosec\theta  = \dfrac{17}{4}

We know that

\boxed{ \sf{ \: cosec\theta  =  \frac{1}{sin\theta } }}

So, using this

\rm :\longmapsto\: {(cosec\theta   -  sin\theta )}^{2}   + 2  = \dfrac{17}{4}

\rm :\longmapsto\: {(cosec\theta   -  sin\theta )}^{2}   = \dfrac{17}{4}  - 2

\rm :\longmapsto\: {(cosec\theta   -  sin\theta )}^{2}   = \dfrac{17 - 8}{4}

\rm :\longmapsto\: {(cosec\theta   -  sin\theta )}^{2}   = \dfrac{9}{4}

\rm :\longmapsto\: {(cosec\theta   -  sin\theta )}   = \dfrac{3}{2}  -  -  - (2)

On Subtracting equation (2) from equation (1), we get

\rm :\longmapsto\:2sin\theta  = \dfrac{5}{2} - \dfrac{3}{2}

\rm :\longmapsto\:2sin\theta  = \dfrac{5 - 3}{2}

\rm :\longmapsto\:2sin\theta  = \dfrac{2}{2}

\rm :\longmapsto\:2sin\theta  = 1

\rm :\longmapsto\:sin\theta  = \dfrac{1}{2}

\rm :\longmapsto\:sin\theta  =sin 30 \degree

\rm :\longmapsto\:\theta  =30 \degree

Therefore,

\rm :\longmapsto\:tan\theta  =tan30 \degree = \dfrac{1}{ \sqrt{3} }

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions