if 4sintheta =3,then show that sec theta and cot theta
Answers
Answer:
Step-by-step explanation:
4sinθ=3
or, sinθ=3/4
∴, cosecθ=1/sinθ=4/3
∵, cosec²θ-cot²θ=1
or, cot²θ=cosec²θ-1
or, cot²θ=(4/3)²-1
or, cot²θ=16/9-1
or, cot²θ=7/9
or, cotθ=√7/3
Again, tanθ=1/cotθ=3/√7
∵, sec²θ-tan²θ=1
or, sec²θ=1+tan²θ
or, sec²θ=1+9/7
or, sec²θ=16/7
or, secθ=4/√7
∴, cosθ=1/secθ=√7/4
√(cosec²θ-cot²θ)/(sec²θ-1) + 2cotθ=√7/x + cosθ
or, √[1/{(4/√7)²-1}]+2×√7/3=√7/x+√7/4
or, √{1/(16/7-1)}+2√7/3=√7/x+√7/4
or, √1/(9/7)+2√7/3=√7/x+√7/4
or, √7/3+2√7/3=√7/x+√7/4
or, 1/3+2/3=1/x+1/4
or, -1/x=1/4-1/3-2/3
or, -1/x=1/4-(1/3+2/3)
or, -1/x=1/4-1
or, -1/x=-3/4
or, x=4/3 Ans.
Answer:
4 sin theta = 3
sin theta = 3/4
opp/hypo = 3/4
so opp will be 3k and hypo will be 4k
sec theta =hypo /adjacent
» 4k / √{(4k)²-(3k)²}
( as hypo ² = oppo²+adje² formula)
(adj= √ hypo²-oppo²)
» 4k/ √( 16k² - 9k²)
» 4k/ √7k² ( taking out k² from root)
» 4k/ √7 k
» 4/√7
cot theta = adj/opp
» √7 k/3k
» √7/3
this may help you ...