If 4sinx=3cosx then find the value of (4sinx-cosx)/(4sinx+cosx)
answer it correctly please ..✌
Answers
Given:
Therefore:
Dividing both numerator and denominator by cos(x), we get:
Substituting the value of sin(x)/cos(x), we get:
Therefore:
1. Relationship between sides.
- sin(x) = Height/Hypotenuse.
- cos(x) = Base/Hypotenuse.
- tan(x) = Height/Base.
- cot(x) = Base/Height.
- sec(x) = Hypotenuse/Base.
- cosec(x) = Hypotenuse/Height.
2. Square formulae.
- sin²x + cos²x = 1.
- cosec²x - cot²x = 1.
- sec²x - tan²x = 1
3. Reciprocal Relationship.
- sin(x) = 1/cosec(x).
- cos(x) = 1/sec(x).
- tan(x) = 1/cot(x).
4. Cofunction identities.
- sin(90° - x) = cos(x) and vice versa.
- cosec(90° - x) = sec(x) and vice versa.
- tan(90° - x) = cot(x) and vice versa.
Given :- If 4sinx=3cosx then find the value of (4sinx-cosx)/(4sinx+cosx) ?
Solution :-
→ 4sin x = 3 cos x
→ sin x / cos x = 3/4
→ tan x = 3/4 = P/B
so,
→ H = √P² + B² = √(3² + 4²) = √(9 + 16) = √25 .
then,
→ sin x = P/H = 3/5
→ cos x = B/H = 4/5
putting both values we get,
→ (4sinx - cosx)/(4sinx + cosx)
→ [4 * (3/5) - (4/5)] / [4 * (3/5) + (4/5)]
→ (12/5 - 4/5) / (12/5 + 4/5)
→ (8/5) / (16/5)
→ (8/5) * (5/16)
→ (8/16)
→ (1/2) (Ans.)
Learn more :-
It sino + tano = m
tano - sino an
Then express the
values of m²-n² in terms
of M and N
https://brainly.in/question/13926306
tanA/(1-cotA) + cotA/(1-tanA)
https://brainly.in/question/16775946