Math, asked by jivanmate5263, 1 year ago

If 4sinx=3cosx then sec^2x/4[1-tan^2x] equal to

Answers

Answered by TPS
0

4 \:  \sin(x)  = 3 \:  \cos(x)  \\  \\  \frac{ \sin(x) }{ \cos(x) }  =  \frac{3}{4}  \\  \\  \tan(x)  =  \frac{3}{4}

Now, solving the problem:

 \frac{ {  \sec }^{2} x}{4(1 -  { \tan}^{2} x)}  \\  \\  =  \frac{1 +  { \tan}^{2} x}{4(1 -  { \tan}^{2} x)}  \\  \\ =   \frac{1 +  { (\frac{3}{4}) }^{2} }{4(1 -  {( \frac{3}{4}) }^{2}) }  \\  \\  =  \frac{1 +  \frac{9}{16} }{4(1 -  \frac{9}{16} )}  \\  \\  =  \frac{ \frac{25}{16} }{4( \frac{7}{16}) }  \\  \\  =  \frac{25}{16}  \times  \frac{16}{4 \times 7}  \\  \\  =  \frac{25}{28}
Similar questions