Math, asked by vinitaman287, 11 months ago

if 4to the power n+1*2to the power n-8 together power n/2to the power 3m =3/8 ,prove that n+1=m
 {4}^{n + 1}  \times  {2}^{n}  -  {8}^{n}  \div  {2}^{3m}  = 3 \div 2   \: prove \: that \: n + 1 = m

Answers

Answered by Anonymous
0

Answer:

Step-by-step explanation:

4^(n+1)*2^n-8^n / 2^3m=3/8

2^[2*(n+1)]*2^n - (2³)^n/2^3m=3/2^3

2^(2n+2)*2^n - 2^3n /2^3m=3/2^3

2^(3n+2) - 2^3n / 2^3m  =3/2^3

2^3n(2^2-1)/2^3m=3/2^3

2^(3n-3m)(4-1)=3*2^-3

3*2^(3n-3m)=3*2^-3

2^(3n-3m)=2^-3

3n-3m=-3

n-m=-1

Hence n+1=m= RHS

Similar questions