Math, asked by diptajitdasgupta, 9 months ago

If 4x+ 1/5x = 2, then 125x^3+ 1/64x^3 is (a) 7 hold 1/4 (b) 6 hold 1/4 (c) 5 hold 1/4 (d) 4 hold 1/4

Answers

Answered by mysticd
2

 Given \: 4x + \frac{1}{5x} = 2

 Multiplying \: both \:sides\: of \: the

 equation\: by \: \frac{5}{4} ,\:we \:get

 \implies \frac{5}{4} \Big(4x + \frac{1}{5x} \Big)= 2 \times \frac{5}{4}

 \implies \frac{5}{4} \times 4x +\frac{5}{4} \times  \frac{1}{5x} \Big)=  \frac{5}{2}

 \implies 5x + \frac{1}{4x} = \frac{5}{2}\: --(1)

/* By Algebraic Identity */

 \boxed {\pink { a^{3}+b^{3} = (a+b)^{3} - 3ab(a+b)}}

 Now, \red{ Value \:of \: 125x^{3} + \frac{1}{64x^{3}} }

 = (5x)^{3} + \Big(\frac{1}{4x}\Big)^{3}

 = \Big( 5x + \frac{1}{4x}\Big)^{3} - 3\times 5x \times \frac{1}{4x} \Big( 5x + \frac{1}{4x}\Big)

 = \Big( \frac{5}{2}\Big)^{3} - \frac{15}{4} \times \frac{5}{2}

 = \frac{5}{2} \Big ( \big(\frac{5}{2}\big)^{2} - \frac{15}{4}\Big)

 = \frac{5}{2} \Big( \frac{25}{4} - \frac{15}{4}\Big)

 = \frac{5}{2}\Big( \frac{25-15}{4}\Big)

 = \frac{5}{2} \times \frac{10}{4}

 = \frac{25}{4}

 \green {= 6\frac{1}{4}}

Therefore.,

 Option \: \pink { ( b ) } \:is \: correct.

•••♪

Answered by rivhkgjjhkxf
0

Answer:

option b 6 whole 1/4 is your correct answer.

please mark me the brainliest and do follow me

Similar questions