Math, asked by atiquealam699, 19 days ago

If 4x^2 + 9y^2 + 16z^2 - 6xy- 12 yz - 8zx = 0 , prove that 2x = 3y = 4z​

Answers

Answered by vikkiain
0

use \:  \: \boxed{if \:  \:  {a}^{2}  +  {b}^{2} +  {c}^{2}  = 0 \:  \:  then, \:  \: a = b = c  = 0}

Step-by-step explanation:

Given, \: \\ 4 {x}^{2}  + 9 {y}^{2}  + 16 {z}^{2}  - 6xy - 12yz - 8zx = 0 \\ On  \:  \: multiplying \:  \:  by \:  \:  2  \:  \: on \:  \:  both  \:  \: sides \\ 8 {x}^{2}  + 18 {y}^{2}  + 32 {z}^{2}  - 12xy - 24yz - 16zx = 0 \\ (4 {x}^{2}  + 9 {y}^{2} - 12xy ) + (9 {y}^{2}  + 16 {z}^{2} - 24yz ) + (16 {z}^{2} + 4 {x}^{2} - 16zx ) = 0 \\ (2x - 3y)^{2}  + (3y - 4z)^{2}  + (4z - 3x)^{2}  = 0 \\ we \:  \: know \:  \:  \boxed{if \:  \:  {a}^{2}  +  {b}^{2} +  {c}^{2}  = 0 \:  \:  then, \:  \: a = b = c  = 0} \\ now, \:  \:  \: 2x - 3y = 3y - 4z = 4z - 3x = 0 \\  so, \:   \:  \: 2x = 3y = 4z

Similar questions