Math, asked by adiya06, 9 months ago

If 4x^2+y^2=40 and xy=6. find the value of 2x+y and 2x-y.

please find the answer fast ​

Answers

Answered by Saby123
3

The solution is in the attachment...

Plz follow me

Thanks for following

Attachments:
Answered by Anonymous
3

GIVEN :-

  • 4x² + y² = 40
  • xy = 6

TO FIND :-

  • value of 2x + y
  • value of 2x - y

SOLUTION :-

for situation 1

 \implies \rm{2x + y}

now squaring it

\implies \rm{(2x + y) {}^{2} }

we know the formula that

\implies  \boxed{\rm{(a + b) {}^{2}  =  {a}^{2} +  {b}^{2}  + 2ab}  }

\implies \rm{(2x + y) {}^{2} =  {(2x)}^{2}   +  {(y)}^{2} + 2(2xy) }

\implies \rm{(2x + y) {}^{2} =  {4x}^{2}   +  {y}^{2} + 4(xy) }

now we know the value that

4x² + y² = 40

xy = 6

hence putting the values

\implies \rm{(2x + y) {}^{2} =  40+ 4(6) }

\implies \rm{(2x + y) {}^{2} =  40+ 24 }

\implies \rm{(2x + y) {}^{2} =  64 }

\implies \rm{(2x + y)  =  \sqrt{64}   }

\implies  \boxed{ \boxed{\rm{(2x + y)  =  8  }}}

for situation 2

\implies \rm{2x  -  y    }

now squaring it

\implies \rm{(2x  - y)  {}^{2}   }

we know the formula that

\implies  \boxed{\rm{(a  -  b) {}^{2}  =  {a}^{2} +  {b}^{2}   -  2ab}  }

\implies \rm{(2x  -  y) {}^{2} =  {(2x)}^{2}   +  {(y)}^{2}  -  2(2xy) }

\implies \rm{(2x  -  y) {}^{2} =  {4x}^{2}   +  {y}^{2}  -  4(xy) }

now we know the value that

4x² + y² = 40

xy = 6

hence putting the values

\implies \rm{(2x  -  y) {}^{2} =  40 -  4(6) }

\implies \rm{(2x -  y) {}^{2} =  40 -  24 }

\implies \rm{(2x  - y) {}^{2} =  16 }

\implies \rm{(2x  - y)  =   \sqrt{16}  }

\implies \boxed{ \boxed{ \rm{(2x  - y)  =  4}}}

Similar questions