If 4x + 2y = 16 and xy = 8, find the value of 64x3 + 8y3
Answers
Answered by
6
Given That:
Cubing both sides of equation (i), we get:
Using identity (a + b)³ = a³ + b³ + 3ab(a + b), we get:
Substitute the required values in the formula, we get:
★ Which is our required answer.
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- a² - b² = (a + b)(a - b)
- (a + b)³ = a³ + 3ab(a + b) + b³
- (a - b)³ = a³ - 3ab(a - b) - b³
- a³ + b³ = (a + b)(a² - ab + b²)
- a³ - b³ = (a - b)(a² + ab + b²)
- (x + a)(x + b) = x² + (a + b)x + ab
- (x + a)(x - b) = x² + (a - b)x - ab
- (x - a)(x + b) = x² - (a - b)x - ab
- (x - a)(x - b) = x² - (a + b)x + ab
Similar questions