Math, asked by hackshacker344, 2 days ago

If 4x + 2y = 16 and xy = 8, find the value of 64x3 + 8y3​

Answers

Answered by anindyaadhikari13
6

\textsf{\large{\underline{Solution}:}}

Given That:

 \rm: \longmapsto4x + 2y= 16 - (i)

 \rm: \longmapsto xy =8

Cubing both sides of equation (i), we get:

 \rm: \longmapsto(4x + 2y)^{3} =  {16}^{3}

Using identity (a + b)³ = a³ + b³ + 3ab(a + b), we get:

 \rm: \longmapsto {64x}^{3}  + 8y^{3}  + 3 \times 4x \times 2y(4x + 2y)=  {16}^{3}

 \rm: \longmapsto {64x}^{3}  + 8y^{3}  +24xy(4x + 2y)=  {16}^{3}

Substitute the required values in the formula, we get:

 \rm: \longmapsto {64x}^{3}  + 8y^{3}  +24 \times 8 \times 16=  {16}^{3}

 \rm: \longmapsto {64x}^{3}  + 8y^{3}  +12\times 16\times 16= {16}^{3}

 \rm: \longmapsto {64x}^{3}  + 8y^{3}= {16}^{3}  - 12 \times  {16}^{2}

 \rm: \longmapsto {64x}^{3}  + 8y^{3}= {16}^{2}(16 -  12)

 \rm: \longmapsto {64x}^{3}  + 8y^{3}= 256 \times 4

 \rm: \longmapsto {64x}^{3}  + 8y^{3}=1024

Which is our required answer.

\textsf{\large{\underline{More To Know}:}}

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + 3ab(a + b) + b³
  • (a - b)³ = a³ - 3ab(a - b) - b³
  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)
  • (x + a)(x + b) = x² + (a + b)x + ab
  • (x + a)(x - b) = x² + (a - b)x - ab
  • (x - a)(x + b) = x² - (a - b)x - ab
  • (x - a)(x - b) = x² - (a + b)x + ab
Similar questions