if 4x+3y =4 and xy =z then find the value of 64x^3+27y^3
Answers
Answered by
8
Solution:
Given that,
- 4x + 3y = 4
- xy = z
- x =z/y
• y=z/x
Now, We have to find the value of 64x³+27y³
☞ 64x³+27y³
☞ (4x) +(3y) (16x² -4x.3y + 9y² )
☞ (4x+3y)(16x² -4x.3y + 9y² )
☞ ( 4 ) ( 16*(z/y)² - 4*z/y . 3*z/x + 9*(z/x)²
☛ ( 4 ) ( 16z²/y² - 4z/y . 3z/x + 9z²/x²
☛ (4)(16z²/y² -12z²/xy + 9z²/x² )
☛ 64z²/y² - 48z²/xy + 36z²/x²
Therefore,
Answer : 64z²/y² - 48z²/xy + 36z²/x² .
suvarna76:
thank you much:-)
Answered by
5
SOLUTION :
Given that,
▪ 4x + 3y = 4
▪ xy = z
To Find : 64x³ + 27y³
⇒64x³ + 27y³ = (4x)³ + (3y)³
⇒64x³ + 27y³ = (4x + 3y)³ - 3 (4x) (3y) (4x + 3y)
⇒64x³ + 27y³ = (4)³ ⁻ 36xy (4)
⇒64x³ + 27y³ = 64 - 36 (z) (4)
⇒64x³ + 27y³ = 64 - 144z
Formula used :
a³ ⁺ b³ ⁼ (a + b)³ - 3ab (a + b)
Similar questions