If (4x+ 3y) = 8 and xy = 1, find the value of (64x^3+27y^3)
Answers
Answer:
64x^3 +27y^3 is 224
Step-by-step explanation:
given 4x +3y = 8 , xy = 1
asked to find the value of 64x^3 + 27y^3
4x + 3y = 8 ----------(1) , xy = 1 ---------(2)
64 can be written as 4 cube and 27 can be written as 3
cube so we can cube equation (1) on both sides
(a+b)^3 = a^3+b^3 + 3ab(a+b)
(4x +3y)^3 = 8^3
64x^3 + 27y^3 +3(4x)(3y)(4x+3y) = 512
64x^3 + 27y^3 + 36(xy) ( 8) = 512 ( from equation (1) 4x+3y
is 8)
64x^3+27y^3+ 36(1)(8) = 512( from equation (2) xy =1)
64x^3+27y^3 + 288 = 512
64x^3 + 27y^3 = 512 - 288
64x^3 + 27y^3 = 224
Answer:
64x^3+27y^3
Can be represented as :
(4x)^3+(3y)^3
by using identity:
(a+b) (a^2-ab+b^2):
(4x+3y) (4x^2-4x×3y+3y^2)
(8) [4x^2-12(1)+3y^2]... .. ... (1) ( given :(4x+3y)=8 and xy =1)
b
Now finding the value of (4x^2+3y^2)
Using Identity (a^2+b^2)= (a+b)^2-2ab:
(4x^2+3y^2)= (4x+3y )^2 -2×4x×3y
=( 8)^2 -24xy
= (64) -24(1)
= 40...........(2)
Putting the value of (2) in (1):
=(8) [4x^2+3y^2-12xy]
=(8) [ 40 -12(1)]
=(8) [ 28]
=224