If (4x + 3y) = 8 and xy = 1, find the value of (64x3 + 27y3).
urgent
Answers
Answered by
2
Answer:
Answer:
64x^3+27y^3
Can be represented as :
(4x)^3+(3y)^3
by using identity:
(a+b) (a^2-ab+b^2):
(4x+3y) (4x^2-4x×3y+3y^2)
(8) [4x^2-12(1)+3y^2]... .. ... (1) ( given :(4x+3y)=8 and xy =1)
b
Now finding the value of (4x^2+3y^2)
Using Identity (a^2+b^2)= (a+b)^2-2ab:
(4x^2+3y^2)= (4x+3y )^2 -2×4x×3y
=( 8)^2 -24xy
= (64) -24(1)
= 40...........(2)
Putting the value of (2) in (1):
=(8) [4x^2+3y^2-12xy]
=(8) [ 40 -12(1)]
=(8) [ 28]
=224
Similar questions