Math, asked by mitalimhatre2004, 1 month ago

if 4x+ 3y= log 4x- 3y find the dy÷ dx​

Answers

Answered by MysteriousMoonchild
5

Answer:

4x  + 3y = log(4x - 3y)

Differentiating w.r.t. x, we get,

4 + 3 \times \frac{dy}{dx}  =  \frac{1}{4x - 3y} (4  - 3\times \frac{dy}{dx} )

4 + 3 \times \frac{dy}{dx}  =  \frac{4}{4x - 3y}  -  \frac{3}{4x - 3y}  \frac{dy}{dx}

 \frac{dy}{dx} (3  +  \frac{3}{4x - 3y}  =  \frac{4}{4x - 3y}  - 4

 \frac{dy}{dx}  =  \frac{ \frac{4}{4x - 3y} - 4 }{3 +  \frac{3}{4x - 3y} }

 \frac{dy}{dx}  =  \frac{4 - 16x + 12y}{3 + 12x - 9y}

Similar questions