Math, asked by chaitali17, 11 months ago

if 4x-3z/4c=4-3y/3b=4y-3x/2a show that each ratio =x+y+z/2a+3b+4c​

Answers

Answered by MaheswariS
21

\textbf{Given:}

\dfrac{4x-3z}{4c}=\dfrac{4z-3y}{3b}=\dfrac{4y-3x}{2a}

\textbf{To prove:}

\text{Each ratio}=\dfrac{x+y+z}{2a+3b+4c}

\textbf{Solution:}

\text{Consider,}

\dfrac{4x-3z}{4c}=\dfrac{4z-3y}{3b}=\dfrac{4y-3x}{2a}

\text{We know that,}

\text{If}\;\bf\frac{a}{b}=\frac{c}{d}=\frac{e}{f}

\text{then,}\;\bf\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a+c+e}{b+d+f}

\implies\dfrac{4x-3z}{4c}=\dfrac{4z-3y}{3b}=\dfrac{4y-3x}{2a}=\dfrac{4x-3z+4z-3y+4y-3x}{4c+3b+2a}

\implies\dfrac{4x-3z}{4c}=\dfrac{4z-3y}{3b}=\dfrac{4y-3x}{2a}=\dfrac{x+y+z}{4c+3b+2a}

\implies\bf\dfrac{4x-3z}{4c}=\dfrac{4z-3y}{3b}=\dfrac{4y-3x}{2a}=\dfrac{x+y+z}{2a+3b+4c}

Find more:

(x+y)/(ax+by)=(y+z)/(ay+bz)=(z+x)/az+bx. Prove that all equal to 2/a+b..

https://brainly.in/question/2739006

Answered by neelamrajawat8955
0

Answer:

Step-by-step explanation:

Similar questions