Math, asked by nitasurya19, 1 year ago

if 4x =√5+2 then find the value of 4x-1/16x is​

Answers

Answered by sk940178
1

The answer is \frac{3\sqrt{5} + 10}{4}

Step-by-step explanation:

Given that 4x = \sqrt{5} + 2, then we have to calculate the value of 4x - \frac{1}{16x}.

Now, 4x - \frac{1}{16x}

= (\sqrt{5} + 2 ) - \frac{1}{4(\sqrt{5} + 2 )}

= (\sqrt{5} + 2 ) - \frac{\sqrt{5} - 2}{4} { Rationalizing the denominator }

= \frac{4\sqrt{5} + 8 - \sqrt{5} + 2}{4}

= \frac{3\sqrt{5} + 10}{4} ( Answer )

Answered by amirgraveiens
1

Given: If 4x=\sqrt{5}+2

To Find: What is the value of 4x-\frac{1}{16x}.

Step-by-step explanation:

Here,

        4x=\sqrt{5}+2

4x-\frac{1}{16x}

=4x-\frac{1}{4\times 4x}

Plug the value of 4x in the above equation,

=\sqrt{5}+2-\frac{1}{4\times (\sqrt{5}+2)}

=\sqrt{5}+2-\frac{(\sqrt{5}-2)}{4\times (\sqrt{5}+2)(\sqrt{5}-2)} (Multiply Numerator and Denominator with (\sqrt{5}-2))      

=\sqrt{5}+2-\frac{(\sqrt{5}-2)}{4\times ((\sqrt{5})^{2} -2^{2} )}

=\sqrt{5}+2-\frac{(\sqrt{5}-2)}{4\times (5-4)}

=\sqrt{5}+2-\frac{(\sqrt{5}-2)}{4}

=\frac{4\sqrt{5}+8- (\sqrt{5}-2)}{4}

=\frac{4\sqrt{5}+8- \sqrt{5}+2}{4}

=\frac{3\sqrt{5}+10}{4}

Therefore, The value of 4x-\frac{1}{16x} is \frac{3\sqrt{5}+10}{4}.

Similar questions