If 4x+5y=10 and xy=12 then evaluate 64x3+125y3
Answers
ANSWER:
- Value of the above expression is (-6200)
GIVEN:
- 4x+5y = 10 ....(i)
- xy = 12. ....(ii)
TO FIND:
- Value of 64x³+125y³.
SOLUTION:
=> 4x+5y = 10
Squaring both sides we get;
=> (4x+5y)² = (10)²
=> (4x)²+(5y)²+2(4x)(5y) = 100
=> 16x²+25y²+40xy = 100
Putting xy = 12 from (ii)
=> 16x²+25y² +40(12) = 100
=> 16x²+25y² = 100-480
=> 16x²+25y² = (-380)
= 64x³+125y³
= (4x)³+(5y)³
= (4x+5y)[(4x)²+(5y)²-(4x)(5y)]
= (4x+5y)(16x²+25y²-20xy)
Putting the values we get;
= 10[-380-20(12)]
= 10(-380-240)
= 10(-620)
= -6200
NOTE:
Some important formulas:
(a+b)² = a²+b²+2ab
(a-b)² = a²+b²-2ab
(a+b)(a-b) = a²-b²
(a+b)³ = a³+b³+3ab(a+b)
(a-b)³ = a³-b³-3ab(a-b)
a³+b³ = (a+b)(a²+b²-ab)
a³-b³ = (a-b)(a²+b²+ab)
(a+b)² = (a-b)²+4ab
(a-b)² = (a+b)²-4ab
GIVEN:
Equation - 1 : 4x + 5y = 10
Equation - 2: xy = 12
TO EVALUATE:
6x³ + 125y³
SOLUTION:
Take the first equation, 4x + 5y = 10
Now, cube on both sides.
==> (4x + 5y)³ = (10)³
==> (4x)³ + (5y)³ + 3(4x × 5y)(4x + 5y) = 1000
[ (a + b)³ = a³ + b³ + 3ab(a + b) ]
==> 64x³ + 125y³ + 3(20xy) (4x + 5y) = 1000
==> 64x³ + 125y³ + 3[ 20 × 12 ] [ 10 ] = 1000
[ From eq - (1) and (2) ]
==> 64x³ + 125y³ + 3 × 240 × 10 = 1000
==> 64x³ + 125y³ + 30 × 240 = 1000
==> 64x³ + 125y³ + 7200 = 1000
==> 64x³ + 125y³ = 1000 - 7200
==> 64x³ + 125y³ = -6200
Therefore, we get the required solution.