Math, asked by devil1172, 1 year ago


If 4x + 6y = 15 and 6x - 8y = 14, then find the value of 3x-2y

Answers

Answered by king627
9

Answer:

7

Step-by-step explanation:

4x+6y=15

6x-8y=14

3x-2y=?

Let's take 2 common from both

2(2x+3y)=15

2(3x-4y)=14

=>3x-4y=7

if 3x-4y=7

then 3x-2y=?

3x=7+4y

=7+4y-4y

=7

Answered by AbhijithPrakash
24

Answer:

3x-2y = 8

Step-by-step explanation:

\textrm{First of all, we have to find the value of }x\textrm{ and }y\textrm{.}

\begin{bmatrix}4x+6y=15\\ 6x-8y=14\end{bmatrix}

\mathrm{Isolate}\:x\:\mathrm{for}\:4x+6y=15

4x+6y=15

\mathrm{Subtract\:}6y\mathrm{\:from\:both\:sides}

4x+6y-6y=15-6y

\mathrm{Simplify}

4x=15-6y

\mathrm{Divide\:both\:sides\:by\:}4

\dfrac{4x}{4}=\dfrac{15}{4}-\dfrac{6y}{4}

\mathrm{Simplify}

x=\dfrac{15-6y}{4}

\mathrm{Subsititute\:}x=\dfrac{15-6y}{4}

\begin{bmatrix}6\cdot \dfrac{15-6y}{4}-8y=14\end{bmatrix}

\mathrm{Isolate}\:y\:\mathrm{for}\:6\cdot\dfrac{15-6y}{4}-8y=14

6\cdot \dfrac{15-6y}{4}-8y=14

\mathrm{Expand\:}6\cdot \dfrac{15-6y}{4}-8y:\quad -17y+\dfrac{45}{2}

-17y+\dfrac{45}{2}=14

\mathrm{Subtract\:}\dfrac{45}{2}\mathrm{\:from\:both\:sides}

-17y+\dfrac{45}{2}-\dfrac{45}{2}=14-\dfrac{45}{2}

\mathrm{Simplify}

-17y=-\dfrac{17}{2}

\mathrm{Divide\:both\:sides\:by\:}-17

\dfrac{-17y}{-17}=\dfrac{-\dfrac{17}{2}}{-17}

\mathrm{Simplify}

y=\dfrac{1}{2}

\mathrm{For\:}x=\dfrac{15-6y}{4}

\mathrm{Subsititute\:}y=\dfrac{1}{2}

x=\dfrac{15-6\cdot \dfrac{1}{2}}{4}

\dfrac{15-6\cdot \dfrac{1}{2}}{4}

6\cdot \dfrac{1}{2}=3

=\dfrac{15-3}{4}

\mathrm{Subtract\:the\:numbers:}\:15-3=12

=\dfrac{12}{4}

\mathrm{Divide\:the\:numbers:}\:\dfrac{12}{4}=3

=3

x=3

\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}

y=\dfrac{1}{2},\:x=3

\textrm{Now, as we got the value of x and y, let's plug them in the equation }3x-2y

3\left(3\right)-2\left(\dfrac{1}{2}\right)

\mathrm{Remove\:parentheses}:\quad \left(a\right)=a

=3\cdot \:3-2\cdot \dfrac{1}{2}

3\cdot \:3=9

2\cdot \dfrac{1}{2}=1

=9-1

\mathrm{Subtract\:the\:numbers:}\:9-1=8

=8

Similar questions