Math, asked by shaijalshIjal, 11 months ago

if 4x square +y square = 40 and xy =6 so find the value of 2x +y​

Answers

Answered by Brâiñlynêha
1

\huge\mathbb{SOLUTION:-}

Given :-

\sf \implies 4x{}^{2}+y{}^{2}=40\\ \sf\implies xy=60

  • we have to find the value of 2x+y

\sf Formula\:will\:be\:used:-\\ \\ \sf(a+b){}^{2}=a{}^{2}+b{}^{2}+2ab

\bf\underline{According\:to\: Question}

\sf (2x+y){}^{2}=(2x){}^{2}+y{}^{2}+2\times 2x\times y\\ \\ \sf\rightarrow (2x+y){}^{2}=4x{}^{2}+y{}^{2}+8xy\\ \\ \tt\implies we\:have=2x+y=40\: \: \: \: \: xy=6\\ \\ \sf\rightarrow (2x+y){}^{2}=40+4\times 6\\ \\ \sf\rightarrow (2x+y){}^{2}=40+24\\ \\ \sf\rightarrow 2x+y=\sqrt{64}\\ \\ \tt\implies 2x+y=8

•The value of 2x+y is 8

#BAL

#answerwithquality

Answered by 3CHANDNI339
37

 \underline \mathbb{SOLUTION}

 \underline \mathbb{GIVEN}

 =  > 4 {x}^{2} +  {y}^{2}   = 40

 =  > xy = 6

NOW,

TO FIND THE VALUE OF 2x + y

 =  > identity =  (a + b) {}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

 \underline \mathbb{ATQ}

  =  > {(2x  + y)}^{2} =  {(2x)}^{2}   +  {y}^{2}  + 2(2x)(y)

 =  >  {(2x + y)}^{2}  = 4 {x}^{2}  +  {y}^{2}  + 4xy

WE HAVE,

 =  > 2x + y = 40 \: and \: xy = 6

 =  >  {(2x + y)}^{2}  = 40 + 4 \times 6

  =  > {(2x + y)}^{2}  = 40 + 24

 =  > 2x + y =  \sqrt{64}

 =  > 2x + y = 8

ANSWER = 2x + y = 8

_______________________________________

#BAL

#Answerwithquality

Similar questions