If 4x²+1/x²=12, then find 8x²+1/x³.
Answers
Step-by-step explanation:
4x^2+1/x^2=12
(2x)^2+(1/x)^2+2×2x×1/x=12+4
(2x+1/x)^2=16
2x+1/x=+/-4……………(1)
cubing both side
(2x)^3+(1/x)^3+3×2x×1/x(2x+1/x)=(+/-4)^3
8x^3+1/x^3+6×(+/-4)=+/-64
8x^3+1/x^3=+/-64 - (+/-24) =+/-40 , Answer
Step-by-step explanation:
Given:-
4x^2 + 1/x^2 = 12
To find out:-
Values of 8x^3 + 1/x^3
Solution:-
We have
4x^2 + 1/x^2 = 12
This express can be also written as in the form of (a+b)^2 = a^2 + 2ab + b^2
Where we have to put a = 2x and b = 1/x, we get
→ (2x + 1/x)^2 = 12
→ (2x)^2 + 2(2x)(1/x) + (1/x)^2 = 12
→ 4x^2 + 2(2) + (1/x)^2 = 12
→ 4x^2 + 4 + 1/x^2 = 12
→ 4x^2 + 1/x^2 = 12 - 4
→ 4x^2 + 1/x^2 = 9
∴ (2x + 1/x)^2 = 9
→ 2x + 1/x = √9
→ 2x + 1/x = 3
Now, cubing on both sides, we get
(2x + 1/x)^3 = (3)^3
[∵ (a+b)^3 = a^3 + b^3 + 3ab(a+b), Where we have to put in our expression a = 2x and b = 1/x]
→ (2x)^2 + (1/x)^3 + 3(2x)(1/x)(2x + 1/x) = (3)^3
→ 4x^3 + 1/x^3 + 6(2x + 1/x) = 27
→ 4x^3 + 1/x^3 + 6(3) = 27
→ 4x^3 + 1/x^3 + 18 = 27
→ 4x^3 + 1/x^3 = 27 - 18
→ 4x^3 + 1/x^3 = 9