If 4x2+9y2=16 xy, then show that 2 log (2x-3y)=2 log 2+log x+logy.
Answers
Answered by
14
2 log(2x - 3y) = 2 log2 + logx + logy
Step-by-step explanation:
Given,
4x² + 9y² = 16xy
or, (2x)² + (3y)² = 16xy
or, (2x)² - (2 * 2x * 3y) + (3y)² = 16xy - (2 * 2x * 3y)
or, (2x - 3y)² = 16xy - 12xy
or, (2x - 3y)² = 4xy
Taking log in both sides, we get
log{(2x - 3y)²} = log(4xy)
or, 2 log(2x - 3y) = log4 + logx + logy
or, 2 log(2x - 3y) = log(2²) + logx + logy
or, 2 log(2x - 3y) = 2 log2 + logx + logy
Hence proved.
Rules:
• log(ab) = loga + logb
• log(aᵇ) = b loga
• (a - b)² = a² - 2ab + b²
Similar questions