Math, asked by gaurdevyanshi, 1 month ago

If 4x² + y² = 40 and cy = 6 , find the value of 2x + y.​

Answers

Answered by Saby123
38

Solution -

If 4x² + y² = 40 and xy = 6, find the value of 2x+y .

4x² + y² = 40

4x² + y² + 4xy = 40 + 4xy

> (2x)² + 2(2x)y + y² = 40 + 4xy

> (2x+y)² = 40+4xy

> (2x+y)² = 40+24 = 64

> (2x+y) = ±8 .

This is the required answer.

________________________________________

Additional Information -

For integers a, b, c € N, the following identities hold true -

(a + b)² = a² + 2ab + b²

(a + b)² = (a - b)² + 4ab

(a - b)² = a² - 2ab + b²

(a - b)² = (a + b)² - 4ab

a² + b² = (a + b)² - 2ab

a² + b² = (a - b)² + 2ab

2 (a² + b²) = (a + b)² + (a - b)²

4ab = (a + b)² - (a - b)²

ab = {(a + b)/2}² - {(a-b)/2}²

(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)

(a + b)³ = a³ + 3a²b + 3ab² b³

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)( a² - ab + b² )

a³ + b³ = (a + b)³ - 3ab( a + b)

a³ - b³ = (a - b)( a² + ab + b²)

a³ - b³ = (a - b)³ + 3ab ( a - b )

________________________________________

Answered by HarshitJaiswal2534
0

Step-by-step explanation:

Solution -

If 4x² + y² = 40 and xy = 6, find the value of 2x+y .

4x² + y² = 40

4x² + y² + 4xy = 40 + 4xy

> (2x)² + 2(2x)y + y² = 40 + 4xy

> (2x+y)² = 40+4xy

> (2x+y)² = 40+24 = 64

> (2x+y) = ±8 .

This is the required answer.

________________________________________

Additional Information -

For integers a, b, c € N, the following identities hold true -

(a + b)² = a² + 2ab + b²

(a + b)² = (a - b)² + 4ab

(a - b)² = a² - 2ab + b²

(a - b)² = (a + b)² - 4ab

a² + b² = (a + b)² - 2ab

a² + b² = (a - b)² + 2ab

2 (a² + b²) = (a + b)² + (a - b)²

4ab = (a + b)² - (a - b)²

ab = {(a + b)/2}² - {(a-b)/2}²

(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)

(a + b)³ = a³ + 3a²b + 3ab² b³

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)( a² - ab + b² )

a³ + b³ = (a + b)³ - 3ab( a + b)

a³ - b³ = (a - b)( a² + ab + b²)

a³ - b³ = (a - b)³ + 3ab ( a - b )

________________________________________

Similar questions