If 4x2+y2=40 and xy=6, find the value of 2x+y
Answers
Answer:
The value of 2x + y is 8.
Step-by-step-explanation:
We have given that,
4x² + y² = 40
xy = 6
We have to find the value of 2x + y.
Now, we know that,
( x + y )² = x² + 2xy + y² - - [ Algebraic identity ]
∴ ( 2x + y )² = ( 2x )² + 2 * 2x * y + y²
⇒ ( 2x + y )² = 4x² + 4xy + y²
⇒ ( 2x + y )² = ( 4x² + y² ) + 4 * ( xy )
⇒ ( 2x + y )² = ( 40 ) + 4 * ( 6 ) - - [ Given ]
⇒ ( 2x + y )² = 40 + 24
⇒ ( 2x + y )² = 64
⇒ √[ ( 2x + y )² ] = √64 - - [ Taking square roots ]
⇒ ( 2x + y ) = 8
∴ 2x + y = 8
─────────────────────
Additional Information:
Some Algebraic Identities:
1. ( a + b )² = a² + 2ab + b²
2. ( a - b )² = a² - 2ab + b²
3. ( a + b ) ( a - b ) = a² - b²
4. ( a + b )³ = a³ + 3a²b + 3ab² + b³
5. a³ + b³ = ( a + b )³ - 3ab ( a + b )
6. a³ - b³ = ( a - b )³ + 3ab ( a - b )
7. ( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ac
♣ Qᴜᴇꜱᴛɪᴏɴ :
★═════════════════★
♣ ᴀɴꜱᴡᴇʀ :
★═════════════════★
♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :
Use algebraic identity : (a + b)² = a² + b² + 2ab
We have value of xy = 6
We have value of 4x² + y² = 40