Math, asked by Hoiiiiiiii09, 2 months ago

If 4x2 + y2 = a and xy = b, find the value of
2x + y.​

Answers

Answered by Anonymous
149

Given ,

4x² + y² = a..(1)

xy = b..(2)

Now, We know that :(2x + y)² = (2x)² + y² + 2 × 2x × y(2x + y)²

= 4x² + y² + 4xy(2x + y)²

= a + 4b.. [ From (1) & (2) ]2x + y

= ± √(a + 4b)

Hence,

The value of 2x + y is ±√(a + 4b)

Hope it will helps

...

Answered by Evilhalt
744

 \large \clubs \:  \:  \:  \:  { \underline{ \sf{ \color{purple}{Question: }}}}

{ \sf{If  \: 4 {x}^{2}  +  {y}^{2}  =  \: a \:  and \:  xy = b, \:  find \:  the \:  value \:  of \:2x + y.}}

 \large \clubs \:  \:  \:  \:  { \underline{ \sf{ \color{purple}{Answer : }}}}

 \implies { \sf{2x + y =  \sqrt{a + 4b}}}

 \large \clubs \:  \:  \:  \:  { \underline{ \sf{ \color{purple}{Solution : }}}}

 \circ \:  \: { \underline{ \boxed{ \sf{ \color{green}{Given :  - }}}}}

Here It is given that ,

 \longmapsto \sf{4x² + y² = a  \:  \:  \:  \qquad{eqation (1)}}

 \longmapsto \sf{xy = b   \:  \:  \: \qquad{eqation \: (2)}}

 \circ \:  \: { \underline{ \boxed{ \sf{ \color{green}{( 2x + y )² = ( 2x )² + (y)² + 2 × 2x × y}}}}}

we may write the above equation by using equation (1) & equation (2),

 \longmapsto \sf{( 2x + y )² = 4x² + y² + 4xy}

  \longmapsto{\sf{( 2x + y )² = a + 4b}}

  • ➣ from Equation 1 and 2

 \dag \:  \: { \underline{ \boxed { \color{red}{\sf{So, \:  2x + y = ± √( a + 4b )}}}}}

Similar questions