Math, asked by saminaanwarh380, 11 months ago

If 4xsquare +9ysquare=16 xy, then show that 2 log (2x-3y)=2 log 2+log x+logy​

Answers

Answered by MaheswariS
6

Answer:

\bf\,2\,log(2x-3y)=2\,log2+logx+logy

Step-by-step explanation:

\text{Given:}

4x^2+9y^2=16xy

\implies\,4x^2+9y^2=12xy+4xy

\implies\,4x^2+9y^2-12xy=4xy

\implies\,(2x)^2+(3y)^2-2(2x)(3y)=4xy

Using, the algebraic identity

\boxed{\bf\,a^2+b^2-2ab=(a-b)^2}

\implies\,(2x-3y)^2=4xy

\text{Taking logarithm on both sides}

\implies\,log(2x-3y)^2=log4xy

Using,

\boxed{\bf\,logMN=logM+logN}

\boxed{\bf\,logM^n=n\,logM}

\implies\,2\,log(2x-3y)=log4+logxy

\implies\,2\,log(2x-3y)=log2^2+logx+logy

\implies\,\boxed{\bf\,2\,log(2x-3y)=2\,log2+logx+logy}

Answered by subhashnidevi4878
2

log4xy = log4xy

Step-by-step explanation:

if 4x^{2}+9y^{2} = 16xy

Proved that,

2log(2x-3y) = 2log2 + logx + logy

log(2x-3y)^{2} = log(2)^{2} + log{x} + log{y}

log({4x^{2} + 9y^{2} - 12xy}) = log(4xy)

log(16xy-12xy) = log4xy

log4xy = log4xy

                                              Proved.

Similar questions