if 5(1/x^2+1/y^2+1/z^2)=4(1/xy+1/yz+1/zx) then find the value of 1/x+1/y+1/z
Answers
Answered by
0
Answer:
Algebra,
We have,
5 \times (\frac{1}{ {x}^{2} } + \frac{1}{ {y}^{2} } + \frac{1}{ {z}^{2} } ) = 4 \times ( \frac{1}{xy} + \frac{1}{yz} + \frac{1}{xz} )5×(
x
2
1
+
y
2
1
+
z
2
1
)=4×(
xy
1
+
yz
1
+
xz
1
)
1/x²+ 1/y²+ 1/z²= 4/5(1/xy + 1/yz + 1/xz)
(1/x + 1/y + 1/z)²-2(1/xy + 1/yz + 1/xz) = 4/5(1/xy + 1/yz + 1/xz)
(1/x + 1/y + 1/z)²=4/5(1/xy + 1/yz + 1/xz) + 2(1/xy + 1/yz + 1/xz)
(1/x + 1/y + 1/z)²=14/5(1/xy + 1/yz + 1/xz)
so the ansewr is,
\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \sqrt{\frac{14}{5} ( \frac{1}{xy} + \frac{1}{yz} + \frac{1}{xz})}
x
1
+
y
1
+
z
1
=
5
14
(
xy
1
+
yz
1
+
xz
1
)
or, 1/x + 1/y + 1/z = 1/xyz√{14/5(xy + yz + xz)}
I think it's the correct, infact sure it's the answer.
Please mark me as Brainlist and Follow.me
Similar questions
Physics,
13 days ago
English,
28 days ago
History,
28 days ago
Chemistry,
8 months ago
Social Sciences,
8 months ago