if 5(1/x^2+1/y^2+1/z^2)=4(1/xy+1/yz+1/zx) then find the value of 1/x+1/y+1/z
Answers
Answered by
0
Answer:
Algebra,
We have,
5 \times (\frac{1}{ {x}^{2} } + \frac{1}{ {y}^{2} } + \frac{1}{ {z}^{2} } ) = 4 \times ( \frac{1}{xy} + \frac{1}{yz} + \frac{1}{xz} )5×(
x
2
1
+
y
2
1
+
z
2
1
)=4×(
xy
1
+
yz
1
+
xz
1
)
1/x²+ 1/y²+ 1/z²= 4/5(1/xy + 1/yz + 1/xz)
(1/x + 1/y + 1/z)²-2(1/xy + 1/yz + 1/xz) = 4/5(1/xy + 1/yz + 1/xz)
(1/x + 1/y + 1/z)²=4/5(1/xy + 1/yz + 1/xz) + 2(1/xy + 1/yz + 1/xz)
(1/x + 1/y + 1/z)²=14/5(1/xy + 1/yz + 1/xz)
so the ansewr is,
\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \sqrt{\frac{14}{5} ( \frac{1}{xy} + \frac{1}{yz} + \frac{1}{xz})}
x
1
+
y
1
+
z
1
=
5
14
(
xy
1
+
yz
1
+
xz
1
)
or, 1/x + 1/y + 1/z = 1/xyz√{14/5(xy + yz + xz)}
I think it's the correct, infact sure it's the answer.
Please mark me as Brainlist and Follow.me
Similar questions