Math, asked by gurjartakhilesh26081, 11 months ago

If |5 2α 1|
B = |0 2 1|
|α 3 -1|
is the inverse of a 3 × 3 matrix A, then the sum of all values of α for which det (A) + 1 = 0, is :
(A) 0 (B) –1
(C) 1 (D) 2

Answers

Answered by MaheswariS
2

\textbf{Given:}

B=\left(\begin{array}{ccc}5&2\alpha&1\\0&2&1\\\alpha&3&-1\end{array}\right)

det(B)=\left|\begin{array}{ccc}5&2\alpha&1\\0&2&1\\\alpha&3&-1\end{array}\right|

det(B)=5(-2-3)-2\alpha(0-\alpha)+1(0-2\alpha)

det(B)=-25+2{\alpha}^2-2\alpha

\text{Since B is the inverse of A, we have }AB=I

\implies\,det(AB)=det(I)

\implies\,det(A)det(B)=1

\implies\,det(A)=\frac{1}{det(B)}

\implies\,det(A)=\frac{1}{2{\alpha}^2-2\alpha-25}

\text{Also, }det(A)+1=0

\frac{1}{2{\alpha}^2-2\alpha-25}+1=0

\implies\,2{\alpha}^2-2\alpha-24=0

\implies\,{\alpha}^2-\alpha-12=0

\implies(\alpha-4)(\alpha+3)=0

\implies\alpha=4,-3

\therefore\textbf{Sum of the values of $\alpha$=4+(-3)=1}

\implies\textbf{Option (C) is correct}

Find more:

Prove that:det(x+y x x, 5x+4y 4x 2x, 10x+8y 8x 3x ) =x^3

https://brainly.in/question/4612859

Similar questions