Math, asked by vineelamanthen, 5 months ago

if (5/2)² × (5/2)a+5 = (5/2)⁸, then find 'a'​

Answers

Answered by Bidikha
21

Given -

 ( { \frac{5}{2} })^{2}  \times  ({ \frac{5}{2} })^{a + 5}  =  ({ \frac{5}{2} })^{8}

To find -

  • The value of a

Solution -

\implies( {\frac{5}{2} })^{2}  \times  ({ \frac{5}{2} })^{a + 5}  =  ({ \frac{5}{2} })^{8}

\implies ({ \frac{5}{2} })^{2 + a + 5}  =  ({ \frac{5}{2} })^{8}

 \implies({ \frac{5}{2} })^{7 + a}  =   ({ \frac{5}{2} })^{8}

\implies7 + a = 8

\implies \: a = 8 - 7

\implies \: a = 1

Therefore the value of a is 1

Verification

\implies ({ \frac{5}{2} })^{2}  \times  ({ \frac{5}{2} })^{a + 5}  =  ({ \frac{5}{2} })^{8}

Putting the value of a =1 we will get -

\implies ({ \frac{5}{2} })^{2}  \times  ({ \frac{5}{2} })^{1 + 5}  =  ({ \frac{5}{2} })^{8}

\implies ({ \frac{5}{2} })^{2}  \times  ({ \frac{5}{2} })^{6}  =(  { \frac{5}{2} })^{8}

\implies( { \frac{5}{2} })^{2 + 6}  =(  { \frac{5}{2} })^{8}

\implies ({ \frac{5}{2} })^{8}  =  ({ \frac{5}{2} })^{8}

L. H. S = R. H. S

Hence, verified

Answered by Anonymous
41

Question:

if (5/2)² × (5/2)a+5 = (5/2)⁸, then find 'a'

Solution:

 \tt { \dfrac {5}{2}^{2} \times \dfrac{5}{2} ^{a+5} = \dfrac {5}{2}^{8} }

\boxed {\bf Using \: identity : a^m \times a^n = a^{m+n} }

: \implies \tt { \dfrac{5}{2}^{2 + a + 5} = \dfrac {5}{2}^{8} }

 : \implies \tt {\dfrac {5}{2} ^{7+a} = \dfrac {5}{2}^{8}}

 : \implies \tt { 7 + a = 8}

 : \implies \tt {a = 1}

_____________________________________

Similar questions