Math, asked by somabagchi94178, 7 months ago

if 5 +2√3 / 7 + 4√3 find the value of a^2 + b^2 ​

Answers

Answered by shomekeyaroy79
2

11 \:  and \:  - 6  \: is \:  the  \: value \:  of \:  a  \: and \:  b  \: if \\  \bold{\frac{(5+2 \sqrt{3})}{(7+4 \sqrt{3})}=a-b \sqrt{3}.}

Given:</p><p> \\ </p><p>\frac{(5+2 \sqrt{3})}{(7+4 \sqrt{3})}=a-b \sqrt{3}(7+43)(5+23)=a−b3</p><p></p><p>

To find: \\ </p><p></p><p>The \:  value \:  of \:  a \:  and \:  b \: .= \: ?</p><p></p><p>Solution:</p><p> \\  \: </p><p>To \:  find \:  the \:  value \:  of \:  a \:  and \:  b, \:  rationalize  \: the \:  given \:  fraction  \: with  \:  \\ 7- 4\sqrt{3}7−43 . \\ By \:  multiplying  \: it  \: both \:  in \:  numerator  \: and \:  denominator \:  we  \: get: \:  \\ </p><p></p><p>\frac{(5+2 \sqrt{3})}{(7+4 \sqrt{3})} \cdot \frac{(7-4 \sqrt{3})}{(7-4 \sqrt{3})}=\frac{5 \times 7-5 \times 4 \sqrt{3}+2 \sqrt{3} \times 7-2 \sqrt{3} \times 4 \sqrt{3}}{7^{2}-4^{2} \cdot 3}(7+43)(5+23)⋅(7−43)(7−43)=72−42⋅35×7−5×43+23×7−23×43</p><p></p><p>Solving \:  the  \: denominator \:  in \:  form \:  of  \: (a^2-b^2)(a2−b2) \:  to \:  get  \: the  \: value \:  of \:  the \:  denominator \: </p><p></p><p>\frac{5 \times 7-5 \times 4 \sqrt{3}+2 \sqrt{3} \times 7-2 \sqrt{3} \times 4 \sqrt{3}}{7^{2}-4^{2} \cdot 3}72−42⋅35×7−5×43+23×7−23×43</p><p></p><p>Subtracting  \: twenty \:  four \:  from  \: thirty  \: five \:  and \:  -20\sqrt{3} + 14\sqrt{3}203+143 separately \:  we \:  get \\ </p><p></p><p>\frac{[35-20 \sqrt{3}+14 \sqrt{3}-24]}{[49-48]}=11-6 \sqrt{3}[49−48][35−203+143−24]=11−63</p><p></p><p>Therefore, \:  the \:  value \:  of \:  the \:  rationalization \:  is \:  11-6 \sqrt{3}11−63</p><p></p><p>Now equating \bold{11-6 \sqrt{3} with a-b \sqrt{3}}11−63witha−b3,we get the value of \bold{a = 11}a=11 and \bold{b = - 6.}b=−6.</p><p></p><p>

Similar questions