Math, asked by kaurramanjeet2276, 3 months ago

if 5+2√3 upon 7+4√3 = a-b √3 ​

Answers

Answered by Yuseong
5

\underline{ \underline{  \Large \pmb{\mathit{ {Given:}} }} }

  \sf{ \dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } = a - b \sqrt{3} }

\underline{ \underline{  \Large \pmb{\mathit{ {To \: calculate:}} }} }

• Value of a and b.

\underline{ \underline{  \Large \pmb{\mathit{ {Explication \: of \: steps :}} }} }

Rationalising the denominator in L.H.S :

 \longrightarrow \sf { \dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  } \\ \\

Rationalising factor of a + b√x is a - b√x, so rationalising factor of 7 + 4√3 is 7 - 4√3. Multiplying it with both denominator and numerator.

 \longrightarrow \sf { \dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } \times \dfrac{7 - 4\sqrt{3} }{7 - 4 \sqrt{3} }  }\\ \\

 \longrightarrow \sf { \dfrac{(5 + 2 \sqrt{3} )( 7 - 4\sqrt{3} ) }{(7 + 4 \sqrt{3})( 7 - 4\sqrt{3} ) }  } \\ \\

 \longrightarrow \sf { \dfrac{(5 + 2 \sqrt{3} )( 7 - 4\sqrt{3} ) }{(7 + 4 \sqrt{3})( 7 - 4\sqrt{3} ) }  }\\ \\

 \longrightarrow \sf { \dfrac{5(7 - 4\sqrt{3} ) + 2 \sqrt{3} (7 - 4\sqrt{3} )}{ {(7)}^{2}  - {(4 \sqrt{3})}^{2}  }} \\ \\

 \longrightarrow \sf { \dfrac{35 - 20 \sqrt{3}  + 14 \sqrt{3}  - (8 \times 3)}{49 - (16 \times 3)}} \\ \\

 \longrightarrow \sf { \dfrac{35 - 20 \sqrt{3}  + 14 \sqrt{3}  - 24}{49 -48}} \\ \\

  \longrightarrow \sf { \dfrac{35  - 24- 20 \sqrt{3}  + 14 \sqrt{3}  }{1}} \\ \\

 \longrightarrow \sf { \dfrac{11- 20 \sqrt{3}  + 14 \sqrt{3}  }{1}}\\ \\

 \longrightarrow \sf {11+ \sqrt{3} ( - 20 + 14)   }\\ \\

 \longrightarrow \sf {11 +  \sqrt{3} ( - 6)   } \\ \\

 \longrightarrow \boxed{ \sf {11 -6 \sqrt{3}} } \\ \\

R.H.S :

 \longrightarrow \boxed{ \sf {a-b \sqrt{3}} }

Comparing L.H.S and R.H.S,

 \longrightarrow \boxed{ \sf {a-b \sqrt{3} = 11 -6 \sqrt{3}}}

We get that,

 \underline{\boxed{\sf{ a = 11}}} \: \red{\bigstar}

 \underline{\boxed{\sf{ b = 6}}} \: \red{\bigstar}

So, the value of a is 11 and the value of b is 6.

Points to remember:

• (a + b) and (a - b) are rationalising factors of each other.

• (a + b√x) and (a - b√x) are rationalising factors of each other.

Some Identities:

• (√a)² = a

• √a√b = √ab

• √a/√b = √a/b

• (√a + √b)(√a - √b) = a - b

• (a + √b)(a - √b) = a² - b

• (√a ± √b)² = a ± 2√ab + b

• (√a + √b)(√c + √d) = √ac + √ad + √bc + √bd

Answered by Salmonpanna2022
0

Step-by-step explanation:

 \bf{ \underline{Given-}} \\

  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  =  \bf \: a - b \sqrt{3}  \\

 \bf \underline{To \:  find \:  out-} \\

 \rm{Value \:  of  \:  a \: and \:  b \:  in  \: given \: expression.} \\

 \bf \underline{Solution-} \\

Given expression

  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  =  \bf \: a - b \sqrt{3}  \\

The denominator is 7 + 4√3.

We know that

Rationalising factor of a + b√c = a - b√c.

So, the rationalising factor of 7 +4√3 = 7-4√3.

On rationalising the denominator them

 \longrightarrow \:   \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} } \\

 \longrightarrow \:  \frac{(5 + 2 \sqrt{3})(7 - 4 \sqrt{3})  }{(7 + 4 \sqrt{3})(7 - 4 \sqrt{3})  }  \\

Now, applying algebraic identity in denominator because it is in the form of;

(a+b)(a-b) = a² - b²

Where, we have to put in our expression: a = 7 and b = 4√3 , we get

\longrightarrow \:  \frac{(5 + 2 \sqrt{3} )(7 - 4 \sqrt{3}) }{(7 {)}^{2} - (4 \sqrt{3} {)}^{2}   } \\

\longrightarrow \:  \frac{(5 + 2 \sqrt{3} )(7 - 4 \sqrt{3}) }{49 - 48}  \\

Subtract 49 from 48 in denominator to get 1.

\longrightarrow \:  \frac{(5 + 2 \sqrt{3} )(7 - 4 \sqrt{3}) }{1}  \\

\longrightarrow \: (5 + 2 \sqrt{3} )(7 - 4 \sqrt{3} ) \\

Now, multiply both term left side to right side.

 \longrightarrow \: 35 + 14 \sqrt{3}  - 20 \sqrt{3}  - 8 \sqrt{3 \times 3 } \\

 \longrightarrow \: 35 + 14 \sqrt{3}  - 20 \sqrt{3}  - 24 \\

 \longrightarrow \: (35 - 24) - 6 \sqrt{3}  \\

 \longrightarrow \: 11 - 6 \sqrt{3}  \\

  \bf\therefore \: 11 - 6 \sqrt{3}  = a - b \sqrt{3}  \\

On, comparing with R.H.S , we have

a = 11 and b = 6

  \bf \underline{Hence, value \:  of \: a  = 11 \: and \: b  =   6.} \\

Used Formulae:

(a+b)(a-b) = a² - b²

Rationalising factor of a + b√c = a - b√c.

Similar questions