Math, asked by IfrahJamil, 23 hours ago

If (√5+√2)÷√7=⅐(√35+a).
Let us calculate the value of a.​

Answers

Answered by talpadadilip417
0

Step-by-step explanation:

\tt\red{\boxed{\boxed{\tt Given :\frac{(\sqrt{5}+\sqrt{2})}{\sqrt{7}}=\frac{1}{7}(\sqrt{35}+a)}}}

1. Simplify \frac{1}{7}(\sqrt{35}+a) to \frac{\sqrt{35}+a}{7}

.

\tt\green{\frac{\sqrt{5}+\sqrt{2}}{\sqrt{7}}=\frac{\sqrt{35}+a}{7}}

2 Multiply both sides by 7.

\tt\blue{\implies\frac{\sqrt{5}+\sqrt{2}}{\sqrt{7}}\times 7=\sqrt{35}+a}

3 Simplify \tt\frac{\sqrt{5}+\sqrt{2}}{\sqrt{7}}\times 7 to \tt\frac{(\sqrt{5}+\sqrt{2})\times 7}{\sqrt{7}}

.

\tt\orange{\implies\frac{(\sqrt{5}+\sqrt{2})\times 7}{\sqrt{7}}=\sqrt{35}+a}

4 Regroup terms.

\tt\pink{\implies\frac{7(\sqrt{5}+\sqrt{2})}{\sqrt{7}}=\sqrt{35}+a}

5 Subtract \tt\sqrt{35} from both sides.

\tt\red{\implies\frac{7(\sqrt{5}+\sqrt{2})}{\sqrt{7}}-\sqrt{35}=a}

6 Switch sides.

\tt\purple{\implies a=\frac{7(\sqrt{5}+\sqrt{2})}{\sqrt{7}}-\sqrt{35}}

Decimal Form: 3.741657

Similar questions