Math, asked by trishaaa99, 10 months ago

If 5^2x-1 - (25)^x-1 = 2500, then find the value of x.

Answers

Answered by Anonymous
5

\Huge{\red{\underline{\textsf{Answer}}}}

5^{(2x - 1)}  - 25^{x - 1} = 2500

5^{(2x - 1)} - 5^{2}^{(x - 1)} = 5^{2} \times 5^{2}  \times 2^{2}

5^{(2x - 1)} - 5^{2x - 2} = 5^{4} \times 2^{2}

5^{(2x - 1)}(1 - 5^{ - 1}) = 5^{4} \times 2^{2}

5^{(2x - 1)} (1 -  \frac{1}{5}) = 5 ^{4} \times 2^{2}

5^{(2x - 1)}( \frac{4}{5}) = 5^{4}  \times  2^{2}

5^{(2x - 1)} = 5^{5}

Comparing both sides

 \implies\rm 2x - 1 = 5

 \implies\rm 2x = 6

 \implies\rm x = 3

Similar questions