Math, asked by udaymandal233, 11 months ago

If 5+√3/5-√3=x-✓15y please answer x+y​

Answers

Answered by mysticd
5

Answer:

 \red { Value \: of \: x + y }\green {=\frac{ 14 + \sqrt{5}}{11}}

Step-by-step explanation:

 LHS = \frac{5+\sqrt{3}}{5-\sqrt{3}}

 = \frac{5+\sqrt{3}}{5-\sqrt{3}}\times \frac{5+\sqrt{3}}{5+\sqrt{3}}

 = \frac{(5-\sqrt{3})^{2}}{5^{2} - (\sqrt{3})^{2}}

 = \frac{5^{2} - 2\times 5 \times \sqrt{3} + (\sqrt{3})^{2}}{25 - 3}

 = \frac{ 25 - 10\sqrt{3} + 3}{22}

 = \frac{28 - 10\sqrt{3}}{22}

 = \frac{28}{22} - \frac{10\sqrt{3}}{22}

 = \frac{14}{11} - \frac{5}{11} \sqrt{3}

 = RHS \\= x - \sqrt{5} \times \sqrt{3} y \:(given)

 x = \frac{14}{11} \:and \: \sqrt{5}y = \frac{5}{11}

 x = \frac{14}{11} \:and \: y = \frac{5}{11\times \sqrt{5}}

 x = \frac{14}{11} \:and \: y = \frac{\sqrt{5}}{11}

 Now , x + y =  \frac{14}{11} + \frac{\sqrt{5}}{11}

 = \frac{ 14 + \sqrt{5}}{11}

Therefore.,

 \red { Value \: of \: x + y }\green {=\frac{ 14 + \sqrt{5}}{11}}

•••♪

Answered by nalinsingh
4

Answer:

Step-by-step explanation:

Attachments:
Similar questions